Crass: identification and reconstruction of CRISPR from unassembled metagenomic data
نویسندگان
چکیده
Clustered regularly interspaced short palindromic repeats (CRISPR) constitute a bacterial and archaeal adaptive immune system that protect against bacteriophage (phage). Analysis of CRISPR loci reveals the history of phage infections and provides a direct link between phage and their hosts. All current tools for CRISPR identification have been developed to analyse completed genomes and are not well suited to the analysis of metagenomic data sets, where CRISPR loci are difficult to assemble owing to their repetitive structure and population heterogeneity. Here, we introduce a new algorithm, Crass, which is designed to identify and reconstruct CRISPR loci from raw metagenomic data without the need for assembly or prior knowledge of CRISPR in the data set. CRISPR in assembled data are often fragmented across many contigs/scaffolds and do not fully represent the population heterogeneity of CRISPR loci. Crass identified substantially more CRISPR in metagenomes previously analysed using assembly-based approaches. Using Crass, we were able to detect CRISPR that contained spacers with sequence homology to phage in the system, which would not have been identified using other approaches. The increased sensitivity, specificity and speed of Crass will facilitate comprehensive analysis of CRISPRs in metagenomic data sets, increasing our understanding of phage-host interactions and co-evolution within microbial communities.
منابع مشابه
MetaCRAST: reference-guided extraction of CRISPR spacers from unassembled metagenomes
Clustered regularly interspaced short palindromic repeat (CRISPR) systems are the adaptive immune systems of bacteria and archaea against viral infection. While CRISPRs have been exploited as a tool for genetic engineering, their spacer sequences can also provide valuable insights into microbial ecology by linking environmental viruses to their microbial hosts. Despite this importance, metageno...
متن کاملSPA: a short peptide assembler for metagenomic data
The metagenomic paradigm allows for an understanding of the metabolic and functional potential of microbes in a community via a study of their proteins. The substrate for protein identification is either the set of individual nucleotide reads generated from metagenomic samples or the set of contig sequences produced by assembling these reads. However, a read-based strategy using reads generated...
متن کاملVirus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia
The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007-2010 from Australian hypersal...
متن کاملReference-independent comparative metagenomics using cross-assembly: crAss
MOTIVATION Metagenomes are often characterized by high levels of unknown sequences. Reads derived from known microorganisms can easily be identified and analyzed using fast homology search algorithms and a suitable reference database, but the unknown sequences are often ignored in further analyses, biasing conclusions. Nevertheless, it is possible to use more data in a comparative metagenomic a...
متن کاملThe standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4)
The DOE-JGI Metagenome Annotation Pipeline (MAP v.4) performs structural and functional annotation for metagenomic sequences that are submitted to the Integrated Microbial Genomes with Microbiomes (IMG/M) system for comparative analysis. The pipeline runs on nucleotide sequences provided via the IMG submission site. Users must first define their analysis projects in GOLD and then submit the ass...
متن کامل